Report

External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell

Science  19 Apr 2013:
Vol. 340, Issue 6130, pp. 334-337
DOI: 10.1126/science.1232994

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Splitting Singlets

Solar cell efficiency is limited because light at wavelengths shorter than the cell's absorption threshold does not channel any of its excess energy into the generated electricity. Congreve et al. (p. 334) have developed a method to harvest the excess energy in carbon-based absorbers through a process termed “singlet fission.” In this process, high-energy photons propel two current carriers, rather than just one, by populating a singlet state that spontaneously divides into a pair of triplet states. Although it works in a functioning organic solar cell, the efficiency needs improving.

Abstract

Singlet exciton fission transforms a molecular singlet excited state into two triplet states, each with half the energy of the original singlet. In solar cells, it could potentially double the photocurrent from high-energy photons. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in a portion of the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, we show a peak external quantum efficiency of (109 ± 1)% at wavelength λ = 670 nanometers for a 15-nanometer-thick pentacene film. The corresponding internal quantum efficiency is (160 ± 10)%. Analysis of the magnetic field effect on photocurrent suggests that the triplet yield approaches 200% for pentacene films thicker than 5 nanometers.

View Full Text

Related Content