Report

Wolbachia Invades Anopheles stephensi Populations and Induces Refractoriness to Plasmodium Infection

Science  10 May 2013:
Vol. 340, Issue 6133, pp. 748-751
DOI: 10.1126/science.1236192

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Infections Against Infection

In the same way that infection with the bacteria Wolbachia spp. can make Aedes mosquitoes resistant to dengue virus, there have been hints that these bacteria can interfere with the reproduction of malaria parasites. Bian et al. (p. 748) established a heritable Wolbachia infection in anopheline mosquitoes, which simultaneously suppressed the reproduction of malaria parasites within the adult female mosquitoes. The results hold promise for developing the model into a biocontrol agent to assist malaria control.

Abstract

Wolbachia is a maternally transmitted symbiotic bacterium of insects that has been proposed as a potential agent for the control of insect-transmitted diseases. One of the major limitations preventing the development of Wolbachia for malaria control has been the inability to establish inherited infections of Wolbachia in anopheline mosquitoes. Here, we report the establishment of a stable Wolbachia infection in an important malaria vector, Anopheles stephensi. In A. stephensi, Wolbachia strain wAlbB displays both perfect maternal transmission and the ability to induce high levels of cytoplasmic incompatibility. Seeding of naturally uninfected A. stephensi populations with infected females repeatedly resulted in Wolbachia invasion of laboratory mosquito populations. Furthermore, wAlbB conferred resistance in the mosquito to the human malaria parasite Plasmodium falciparum.

View Full Text