Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma

Science  17 May 2013:
Vol. 340, Issue 6134, pp. 857-861
DOI: 10.1126/science.1232245

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

This article has a correction. Please see:

EZ Inhibition

Missense mutations in the core constituents of the genome packaging material, chromatin, have been implicated in several of human cancers. Nucleosomes are made up of histones, and a mutation of lysine 27 (K27) to methionine in the N-terminal tail of histone variants H3.3 and H3.1 has been identified in various pediatric gliomas. Lewis et al. (p. 857, published online 28 March; see the Perspective by Morgan and Shilatifard) show that the polycomb enzyme complex, which can epigenetically modify K27 by addition of a methyl group—and which is often a silencing signal—is itself potently inhibited by replacement of the H3.3/3.1 K27 by methionine. The inhibition of the EZH2 subunit causes an overall reduction of K27 methylation. Methionine mutants of other methylated lysine residues in histone H3 cause similar reductions in methylation levels of the cognate lysine, altering the epigenetic profiles of such cancer cells.


Sequencing of pediatric gliomas has identified missense mutations Lys27Met (K27M) and Gly34Arg/Val (G34R/V) in genes encoding histone H3.3 (H3F3A) and H3.1 (HIST3H1B). We report that human diffuse intrinsic pontine gliomas (DIPGs) containing the K27M mutation display significantly lower overall amounts of H3 with trimethylated lysine 27 (H3K27me3) and that histone H3K27M transgenes are sufficient to reduce the amounts of H3K27me3 in vitro and in vivo. We find that H3K27M inhibits the enzymatic activity of the Polycomb repressive complex 2 through interaction with the EZH2 subunit. In addition, transgenes containing lysine-to-methionine substitutions at other known methylated lysines (H3K9 and H3K36) are sufficient to cause specific reduction in methylation through inhibition of SET-domain enzymes. We propose that K-to-M substitutions may represent a mechanism to alter epigenetic states in a variety of pathologies.

View Full Text

Cited By...