Report

Molecular Basis of Age-Dependent Vernalization in Cardamine flexuosa

+ See all authors and affiliations

Science  31 May 2013:
Vol. 340, Issue 6136, pp. 1097-1100
DOI: 10.1126/science.1234340

You are currently viewing the abstract.

View Full Text

Multiple Inputs to Flowering

Perennial plants need to cycle through an extended vegetative phase, in a process known as vernalization, before they initiate flowering. Bergonzi et al. (p. 1094) and Zhou et al. (p. 1097) studied how molecular signals translate environmental information—such as exposure to a winter season or changes in daylength and physiological information, such as age of the plant—into signals that promote flowering. In both Arabis alpina and Cardamine flexuosa, age and vernalization pathways are integrated through the regulation of microRNAs miR156 and miR172.

Abstract

Plants flower in response to many varied cues, such as temperature, photoperiod, and age. The floral transition of Cardamine flexuosa, a herbaceous biennial-to-perennial plant, requires exposure to cold temperature, a treatment known as vernalization. C. flexuosa younger than 5 weeks old are not fully responsive to cold treatment. We demonstrate that the levels of two age-regulated microRNAs, miR156 and miR172, regulate the timing of sensitivity in response to vernalization. Age and vernalization pathways coordinately regulate flowering through modulating the expression of CfSOC1, a flower-promoting MADS-box gene. The related annual Arabidopsis thaliana, which has both vernalization and age pathways, does not possess an age-dependent vernalization response. Thus, the recruitment of age cue in response to environmental signals contributes to the evolution of life cycle in plants.

View Full Text