Report

Quantum Coherent Energy Transfer over Varying Pathways in Single Light-Harvesting Complexes

Science  21 Jun 2013:
Vol. 340, Issue 6139, pp. 1448-1451
DOI: 10.1126/science.1235820

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Coherence in Photosynthesis

It is unclear how energy absorbed by pigments in antenna proteins is transferred to the central site of chemical catalysis during photosynthesis. Hildner et al. (p. 1448) observed coherence—prolonged persistence of a quantum mechanical phase relationship—at the single-molecule level in light-harvesting complexes from purple bacteria. The results bolster conclusions from past ensemble measurements that coherence plays a pivotal role in photosynthetic energy transfer. Hayes et al. (p. 1431, published online 18 April) examined a series of small molecules comprised of bridged chromophores that also manifest prolonged coherence.

Abstract

The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting.

View Full Text