Report

Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation

Science  21 Jun 2013:
Vol. 340, Issue 6139, pp. 1451-1455
DOI: 10.1126/science.1237908

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Parkin Enhanced?

Inactivation of parkin, an E3 ubiquitin ligase, is responsible for a familial form of Parkinson's disease and may be involved in sporadic forms as well. Trempe et al. (p. 1451, published online 9 May) present the crystal structure of full-length parkin in an autoinhibited configuration. Guided by the structure, mutations were designed that activated parkin both in vitro and in cells. Because parkin is neuroprotective, the structure provides a framework for enhancing parkin function as a therapeutic strategy in Parkinson's disease.

Abstract

Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson’s disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys431 in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.

View Full Text

Cited By...