Report

Developmental Control of the Melanocortin-4 Receptor by MRAP2 Proteins in Zebrafish

Science  19 Jul 2013:
Vol. 341, Issue 6143, pp. 278-281
DOI: 10.1126/science.1232995

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Accessory to Obesity?

Melanocortin receptors are a family of cell membrane receptors that control diverse physiological functions. Mutations in the gene encoding melanocortin 4 receptor (MC4R) are a cause of familial early-onset obesity. Asai et al. (p. 275) studied the function of an accessory protein for MC4R signaling, MRAP2, and found that mice genetically deficient in MRAP2 develop severe obesity. Sequencing of MRAP2 in unrelated, severely obese humans revealed one individual with a clearly disruptive genetic variant, suggesting that MRAP2 mutations might also be a rare cause of human obesity. In a zebrafish model, Sebag et al. (p. 278) studied two paralogs of the MRAP2 accessory protein, one of which enhanced MC4R responsiveness to α–melanocyte-stimulating hormone, which regulates feeding and growth.

Abstract

The melanocortin-4 receptor (MC4R) is essential for control of energy homeostasis in vertebrates. MC4R interacts with melanocortin receptor accessory protein 2 (MRAP2) in vitro, but its functions in vivo are unknown. We found that MRAP2a, a larval form, stimulates growth of zebrafish by specifically blocking the action of MC4R. In cell culture, this protein binds MC4R and reduces the ability of the receptor to bind its ligand, α–melanocyte-stimulating hormone (α-MSH). A paralog, MRAP2b, expressed later in development, also binds MC4R but increases ligand sensitivity. Thus, MRAP2 proteins allow for developmental control of MC4R activity, with MRAP2a blocking its function and stimulating growth during larval development, whereas MRAP2b enhances responsiveness to α-MSH once the zebrafish begins feeding, thus increasing the capacity for regulated feeding and growth.

View Full Text