Report

Hierarchical Porous Polymer Scaffolds from Block Copolymers

Science  02 Aug 2013:
Vol. 341, Issue 6145, pp. 530-534
DOI: 10.1126/science.1238159

You are currently viewing the abstract.

View Full Text

A Complicated Scaffold, Simply

Materials with tailored pore structures can be useful as catalysis supports and for lightweight materials. When preparing medical scaffolds, restrictive preparation conditions have to be met, which can prohibit multistep preparation procedures. Sai et al. (p. 530) describe a method for making porous polymers containing both relatively large (several microns) interconnecting pores and a second population of ∼ tens of nanometer pores. The process exploits spinodal decomposition of a block copolymer blended with small-molecule additives and requires a simple washing step with water, methanol, or ethanol.

Abstract

Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth.

View Full Text