You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Examining Y
The evolution of human populations has long been studied with unique sequences from the nonrecombining, male-specific Y chromosome (see the Perspective by Cann). Poznik et al. (p. 562) examined 9.9 Mb of the Y chromosome from 69 men from nine globally divergent populations—identifying population and individual specific sequence variants that elucidate the evolution of the Y chromosome. Sequencing of maternally inherited mitochondrial DNA allowed comparison between the relative rates of evolution, which suggested that the coalescence, or origin, of the human Y chromosome and mitochondria both occurred approximately 120 thousand years ago. Francalacci et al. (p. 565) investigated the sequence divergence of 1204 Y chromosomes that were sampled within the isolated and genetically informative Sardinian population. The sequence analyses, along with archaeological records, were used to calibrate and increase the resolution of the human phylogenetic tree.
Abstract
Genetic variation within the male-specific portion of the Y chromosome (MSY) can clarify the origins of contemporary populations, but previous studies were hampered by partial genetic information. Population sequencing of 1204 Sardinian males identified 11,763 MSY single-nucleotide polymorphisms, 6751 of which have not previously been observed. We constructed a MSY phylogenetic tree containing all main haplogroups found in Europe, along with many Sardinian-specific lineage clusters within each haplogroup. The tree was calibrated with archaeological data from the initial expansion of the Sardinian population ~7700 years ago. The ages of nodes highlight different genetic strata in Sardinia and reveal the presumptive timing of coalescence with other human populations. We calculate a putative age for coalescence of ~180,000 to 200,000 years ago, which is consistent with previous mitochondrial DNA–based estimates.
↵† Laura Morelli prematurely passed away on 20 February 2013. This work is dedicated to her memory.











