Report

Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging

Science  09 Aug 2013:
Vol. 341, Issue 6146, pp. 655-658
DOI: 10.1126/science.1240672

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Poring Over the Nuclear Pore

The nuclear pore is a macromolecular complex that traverses the paired membranes of the nuclear envelope through which a variety of nuclear protein and RNA cargoes must traffic. Szymborska et al. (p. 655, published online 11 July) combined super-resolution microscopy with single-particle averaging to localize the proteins that make up the structural scaffold of the nuclear pore complex with a precision well below one nanometer. These molecular positional constraints clarified contradictory models for the structure of the nuclear pore and demonstrate that the structural organization of protein complexes can be studied by light microscopy in situ in whole cells.

Abstract

Much of life’s essential molecular machinery consists of large protein assemblies that currently pose challenges for structure determination. A prominent example is the nuclear pore complex (NPC), for which the organization of its individual components remains unknown. By combining stochastic super-resolution microscopy, to directly resolve the ringlike structure of the NPC, with single particle averaging, to use information from thousands of pores, we determined the average positions of fluorescent molecular labels in the NPC with a precision well below 1 nanometer. Applying this approach systematically to the largest building block of the NPC, the Nup107-160 subcomplex, we assessed the structure of the NPC scaffold. Thus, light microscopy can be used to study the molecular organization of large protein complexes in situ in whole cells.

View Full Text

Cited By...