Report

Identification of Wheat Gene Sr35 That Confers Resistance to Ug99 Stem Rust Race Group

Science  16 Aug 2013:
Vol. 341, Issue 6147, pp. 783-786
DOI: 10.1126/science.1239022

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Resistance May Not Be Futile

Recently, Ug99, a particularly devastating strain of wheat stem rust fungus, has emerged, which could potentially threaten food security. Now, two genes have been cloned that offer resistance to Ug99. Saintenac et al. (p. 783, published online 27 June) cloned Sr35 from Triticum monococcum, a diploid wheat species not often cultivated. Periyannan et al. (p. 786, published online 27 June) cloned Sr33 from Aegilops tauschii, a diploid wild grass that contributed to the hexaploid genome of cultivated wheat. The genes both encode proteins that show features typical of other disease resistance proteins and offer opportunities to slow the pace of Ug99 progression.

Abstract

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating disease that can cause severe yield losses. A previously uncharacterized Pgt race, designated Ug99, has overcome most of the widely used resistance genes and is threatening major wheat production areas. Here, we demonstrate that the Sr35 gene from Triticum monococcum is a coiled-coil, nucleotide-binding, leucine-rich repeat gene that confers near immunity to Ug99 and related races. This gene is absent in the A-genome diploid donor and in polyploid wheat but is effective when transferred from T. monococcum to polyploid wheat. The cloning of Sr35 opens the door to the use of biotechnological approaches to control this devastating disease and to analyses of the molecular interactions that define the wheat-rust pathosystem.

View Full Text

Related Content