Review

The Chemistry and Applications of Metal-Organic Frameworks

See allHide authors and affiliations

Science  30 Aug 2013:
Vol. 341, Issue 6149, 1230444
DOI: 10.1126/science.1230444

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Structured Abstract

Background

Metal-organic frameworks (MOFs) are made by linking inorganic and organic units by strong bonds (reticular synthesis). The flexibility with which the constituents’ geometry, size, and functionality can be varied has led to more than 20,000 different MOFs being reported and studied within the past decade. The organic units are ditopic or polytopic organic carboxylates (and other similar negatively charged molecules), which, when linked to metal-containing units, yield architecturally robust crystalline MOF structures with a typical porosity of greater than 50% of the MOF crystal volume. The surface area values of such MOFs typically range from 1000 to 10,000 m2/g, thus exceeding those of traditional porous materials such as zeolites and carbons. To date, MOFs with permanent porosity are more extensive in their variety and multiplicity than any other class of porous materials. These aspects have made MOFs ideal candidates for storage of fuels (hydrogen and methane), capture of carbon dioxide, and catalysis applications, to mention a few.

Embedded Image

Metal-organic framework (MOF) structures are amenable to expansion and incorporation of multiple functional groups within their interiors. (A) The isoreticular expansion of MOFs maintains the network’s topology by using an expanded version of the parent organic linker. Examples of catalysis in MOFs are shown in the large space created by IRMOF-74-XI; Me is a methyl group. (B) Conceptual illustration of a multivariate MOF (MTV-MOF) whose pores are decorated by heterogeneous mixtures of functionalities that arrange in specific sequences. (Background) Optical image of zeolitic imidazolate framework (ZIF) crystals.

Advances

The ability to vary the size and nature of MOF structures without changing their underlying topology gave rise to the isoreticular principle and its application in making MOFs with the largest pore aperture (98 Å) and lowest density (0.13 g/cm3). This has allowed for the selective inclusion of large molecules (e.g., vitamin B12) and proteins (e.g., green fluorescent protein) and the exploitation of the pores as reaction vessels. Along these lines, the thermal and chemical stability of many MOFs has made them amenable to postsynthetic covalent organic and metal-complex functionalization. These capabilities enable substantial enhancement of gas storage in MOFs and have led to their extensive study in the catalysis of organic reactions, activation of small molecules (hydrogen, methane, and water), gas separation, biomedical imaging, and proton, electron, and ion conduction. At present, methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.

Outlook

The precise control over the assembly of MOFs is expected to propel this field further into new realms of synthetic chemistry in which far more sophisticated materials may be accessed. For example, materials can be envisaged as having (i) compartments linked together to operate separately, yet function synergistically; (ii) dexterity to carry out parallel operations; (iii) ability to count, sort, and code information; and (iv) capability of dynamics with high fidelity. Efforts in this direction are already being undertaken through the introduction of a large number of different functional groups within the pores of MOFs. This yields multivariate frameworks in which the varying arrangement of functionalities gives rise to materials that offer a synergistic combination of properties. Future work will involve the assembly of chemical structures from many different types of building unit, such that the structures’ function is dictated by the heterogeneity of the specific arrangement of their constituents.

Strategies for Metal-Organic Frameworks

Metal-organic frameworks are porous materials that can exhibit very high surface areas that have potential for applications such as gas storage and separation, as well as catalysis. Furukawa et al. (1230444) review the structures devised so far and discuss the design strategies that allow families of materials to be synthesized and modified with similar framework topology but vary in pore size and type of functional groups present on the linkers.

Abstract

Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

View Full Text