Report

Reversibly Assembled Cellular Composite Materials

Science  13 Sep 2013:
Vol. 341, Issue 6151, pp. 1219-1221
DOI: 10.1126/science.1240889

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Quality Ultralight

Ensuring the light-weight and high-strength properties of carbon-fiber composite materials is costly. Cheung and Gershenfeld (p. 1219, published online 15 August; see the Perspective by Schaedler et al.) have mass-produced cross-sectional parts that can be assembled into strong, ultralight lattices. Carbon-fiber composites are sliced into cross-shaped pieces that can be independently tested and reliably assembled into rigid and reversible cuboctahedral lattices.

Abstract

We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber–reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

View Full Text