Report

Cytoplasmic LPS Activates Caspase-11: Implications in TLR4-Independent Endotoxic Shock

Science  13 Sep 2013:
Vol. 341, Issue 6151, pp. 1250-1253
DOI: 10.1126/science.1240988

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Move Over, TLR4

The innate immune system senses bacterial lipopolysaccharide (LPS) through Toll-like receptor 4 (TLR4) (see the Perspective by Kagan). However, Kayagaki et al. (p 1246, published online 25 July) and Hagar et al. (p. 1250) report that the hexa-acyl lipid A component of LPS from Gramnegative bacteria is able to access the cytoplasm and activate caspase-11 to signal immune responses independently of TLR4. Mice that lack caspase-11 are resistant to LPS-induced lethality, even in the presence of TLR4.

Abstract

Inflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS.

View Full Text

Cited By...