Control of Surface Charges by Radicals as a Principle of Antistatic Polymers Protecting Electronic Circuitry

See allHide authors and affiliations

Science  20 Sep 2013:
Vol. 341, Issue 6152, pp. 1368-1371
DOI: 10.1126/science.1241326

You are currently viewing the abstract.

View Full Text

Dissipating Static

The accumulation of a static charge on polymers and other insulators often causes little more than a slight annoyance but it can lead to the destruction of sensitive electrical equipment. Thus, approaches are required that prevent and dissipate static electricity through improved electrical conductivity, or that ensure complete discharge before a contact with a key piece of equipment. Baytekin et al. (p. 1368) show that surface charges will colocalize with radicals on the surface of a polymer, and that the addition of free radical scavengers causes a discharge of the surface as the charges are removed. The approach was used successfully to produce coatings that protected electronic circuits from damage caused by electrostatic discharge.


Even minute quantities of electric charge accumulating on polymer surfaces can cause shocks, explosions, and multibillion-dollar losses to electronic circuitry. This paper demonstrates that to remove static electricity, it is not at all necessary to “target” the charges themselves. Instead, the way to discharge a polymer is to remove radicals from its surface. These radicals colocalize with and stabilize the charges; when they are scavenged, the surfaces discharge rapidly. This radical-charge interplay allows for controlling static electricity by doping common polymers with small amounts of radical-scavenging molecules, including the familiar vitamin E. The effectiveness of this approach is demonstrated by rendering common polymers dust-mitigating and also by using them as coatings that prevent the failure of electronic circuitry.

View Full Text