Report

Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes

+ See all authors and affiliations

Science  04 Oct 2013:
Vol. 342, Issue 6154, pp. 91-95
DOI: 10.1126/science.1236098

You are currently viewing the abstract.

View Full Text

Gas Separations

When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen.

Abstract

Graphene is a distinct two-dimensional material that offers a wide range of opportunities for membrane applications because of ultimate thinness, flexibility, chemical stability, and mechanical strength. We demonstrate that few- and several-layered graphene and graphene oxide (GO) sheets can be engineered to exhibit the desired gas separation characteristics. Selective gas diffusion can be achieved by controlling gas flow channels and pores via different stacking methods. For layered (3- to 10-nanometer) GO membranes, tunable gas transport behavior was strongly dependent on the degree of interlocking within the GO stacking structure. High carbon dioxide/nitrogen selectivity was achieved by well-interlocked GO membranes in high relative humidity, which is most suitable for postcombustion carbon dioxide capture processes, including a humidified feed stream.

View Full Text