Report

Specific Chemical Reactivities of Spatially Separated 3-Aminophenol Conformers with Cold Ca+ Ions

+ See all authors and affiliations

Science  04 Oct 2013:
Vol. 342, Issue 6154, pp. 98-101
DOI: 10.1126/science.1242271

You are currently viewing the abstract.

View Full Text

Reactive Conformations

Most molecules manifest a fair amount of flexibility at room temperature, in particular through interconversion of rotational conformers—structures that differ by the relative orientation of groups on either side of a single covalent bond. Chang et al. (p. 98; see the Perspective by Heaven) devised a method to explore the comparative reactivities of different conformers. A mixture of the conformers was prepared in a molecular beam cold enough to preclude interconversion; then an electric field was used to push the different conformers apart, spatially resolving subsequent collisional interactions with a target of trapped ions.

Abstract

Many molecules exhibit multiple rotational isomers (conformers) that interconvert thermally and are difficult to isolate. Consequently, a precise characterization of their role in chemical reactions has proven challenging. We have probed the reactivity of specific conformers by using an experimental technique based on their spatial separation in a molecular beam by electrostatic deflection. The separated conformers react with a target of Coulomb-crystallized ions in a trap. In the reaction of Ca+ with 3-aminophenol, we find a twofold larger rate constant for the cis compared with the trans conformer (differentiated by the O–H bond orientation). This result is explained by conformer-specific differences in the long-range ion-molecule interaction potentials. Our approach demonstrates the possibility of controlling reactivity through selection of conformational states.

View Full Text