Report

Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere

Science  11 Oct 2013:
Vol. 342, Issue 6155, pp. 227-230
DOI: 10.1126/science.1241514

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Mapping Mantle Mixing

Mantle convection is the primary driving force for plate tectonics, but mantle convection also mixes material in the interior of Earth and controls heat flow from the core. The patterns of convection are often difficult to image directly with seismic waves—particularly on a global scale. French et al. (p. 227, published online 5 September) constructed a global tomographic model of the upper mantle and transition zone that is sensitive to changes in seismic velocity and anisotropy. The approach identifies elongated, horizontal structures in the upper mantle that are parallel to overlying plate motions. At greater depths, however, vertical plume-like structures extend from the lower mantle and disappear near the base of low velocity zones like those observed beneath Hawaii.

Abstract

Understanding the relationship between different scales of convection that drive plate motions and hotspot volcanism still eludes geophysicists. Using full-waveform seismic tomography, we imaged a pattern of horizontally elongated bands of low shear velocity, most prominent between 200 and 350 kilometers depth, which extends below the well-developed low-velocity zone. These quasi-periodic fingerlike structures of wavelength ~2000 kilometers align parallel to the direction of absolute plate motion for thousands of kilometers. Below 400 kilometers depth, velocity structure is organized into fewer, undulating but vertically coherent, low-velocity plumelike features, which appear rooted in the lower mantle. This suggests the presence of a dynamic interplay between plate-driven flow in the low-velocity zone and active influx of low-rigidity material from deep mantle sources deflected horizontally beneath the moving top boundary layer.

View Full Text

Cited By...