Report

Structures and Receptor Binding of Hemagglutinins from Human-Infecting H7N9 Influenza Viruses

Science  11 Oct 2013:
Vol. 342, Issue 6155, pp. 243-247
DOI: 10.1126/science.1242917

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Two Viruses to Bind

Structural studies of two different H7N9 influenza viruses isolated from humans—A/Shanghai/1/2013 and A/Anhui/1/2013—which have different amino acid sequences in the receptor binding site, provide data indicating that the virus is in transition with respect to host adaptation. The Shanghai virus was one of the first isolated in humans that binds avian receptor glycans with high affinity, but binds poorly to human receptors. However, the later Anhui isolates can bind both avian and human receptors at high affinity. Shi et al. (p. 243, published online 5 September) show that four hydrophobic mutations contribute to acquisition of affinity for the human receptor by the virus hemagglutinin (HA) and confirm this effect in binding studies with virus particles. Further comparison of a mutant H7N9 A/Anhui/1/2013 HA with the bird flu H5N1 virus revealed the significance of some of the naturally occurring changes observed in circulating H7N9 viruses, which helps to explain how these viruses have been able to cause many severe human infections in a short time.

Abstract

An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor–binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln226) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu226). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu226 → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor–binding property.

View Full Text

Related Content