Research Article

Hyperdominance in the Amazonian Tree Flora

Science  18 Oct 2013:
Vol. 342, Issue 6156,
DOI: 10.1126/science.1243092

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

Structured Abstract


Recent decades have seen a major international effort to inventory tree communities in the Amazon Basin and Guiana Shield (Amazonia), but the vast extent and record diversity of these forests have hampered an understanding of basinwide patterns. To overcome this obstacle, we compiled and standardized species-level data on more than half a million trees in 1170 plots sampling all major lowland forest types to explore patterns of commonness, rarity, and richness.

Embedded Image

A map of Amazonia showing the location of the 1430 Amazon Tree Diversity Network (ATDN) plots that contributed data to this paper. The white polygon marks our delimitation of the study area and consists of 567 1° grid cells (area = 6.29 million km2). Orange circles indicate plots on terra firme; blue squares, plots on seasonally or permanently flooded terrain (várzea, igapó, swamps); yellow triangles, plots on white-sand podzols; gray circles, plots only used for tree density calculations. Background is from Visible Earth. CA, central Amazonia; EA, eastern Amazonia; GS, Guyana Shield; SA, southern Amazonia; WAN, northern part of western Amazonia; WAS, southern part of western Amazonia. More details are shown in figs. S1 to S3.


The ~6-million-km2 Amazonian lowlands were divided into 1° cells, and mean tree density was estimated for each cell by using a loess regression model that included no environmental data but had its basis exclusively in the geographic location of tree plots. A similar model, allied with a bootstrapping exercise to quantify sampling error, was used to generate estimated Amazon-wide abundances of the 4962 valid species in the data set. We estimated the total number of tree species in the Amazon by fitting the mean rank-abundance data to Fisher’s log-series distribution.


Our analyses suggest that lowland Amazonia harbors 3.9 × 1011 trees and ~16,000 tree species. We found 227 “hyperdominant” species (1.4% of the total) to be so common that together they account for half of all trees in Amazonia, whereas the rarest 11,000 species account for just 0.12% of trees. Most hyperdominants are habitat specialists that have large geographic ranges but are only dominant in one or two regions of the basin, and a median of 41% of trees in individual plots belong to hyperdominants. A disproportionate number of hyperdominants are palms, Myristicaceae, and Lecythidaceae.


The finding that Amazonia is dominated by just 227 tree species implies that most biogeochemical cycling in the world’s largest tropical forest is performed by a tiny sliver of its diversity. The causes underlying hyperdominance in these species remain unknown. Both competitive superiority and widespread pre-1492 cultivation by humans are compelling hypotheses that deserve testing. Although the data suggest that spatial models can effectively forecast tree community composition and structure of unstudied sites in Amazonia, incorporating environmental data may yield substantial improvements. An appreciation of how thoroughly common species dominate the basin has the potential to simplify research in Amazonian biogeochemistry, ecology, and vegetation mapping. Such advances are urgently needed in light of the >10,000 rare, poorly known, and potentially threatened tree species in the Amazon.

Seeing the Trees in the Forest

Despite botanical exploration over two centuries, knowledge of the species composition and quantitative distribution of the trees of the Amazonian forest has remained decidedly patchy. Ter Steege et al. (1243092) report the results from a network of 1170 tree plots arrayed across the Amazon Basin and Guiana Shield, in which the species of all trees with stem diameter >10 centimeters were identified. The tree flora comprised a total of about 16,000 species. However, just 227 very common Amazonian species accounted for half of the trees in the Amazon—the world's most diverse forest.


The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species—less diverse than the North American tree flora—accounts for half of the world’s most diverse tree community.

View Full Text