Stellar Spin-Orbit Misalignment in a Multiplanet System

+ See all authors and affiliations

Science  18 Oct 2013:
Vol. 342, Issue 6156, pp. 331-334
DOI: 10.1126/science.1242066

You are currently viewing the abstract.

View Full Text

Misaligned Planets

Stars with multiple coplanar planets have not been seen to show misalignments between the equatorial plane of the star and the orbital plane of the planets—a diagnostic of the dynamical history of planetary systems. Huber et al. (p. 331) analyzed the Kepler 56 planetary system, which contains a giant-sized and an intermediate-sized planet. The planets have orbits that are close to coplanar, but the planetary orbits are misaligned with the stellar equator. A third companion in a wide orbit, which could be another star or a planet, could explain the misaligned configuration.


Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple coplanar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting coplanar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.

View Full Text

Related Content