Report

Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3

Science  18 Oct 2013:
Vol. 342, Issue 6156, pp. 344-347
DOI: 10.1126/science.1243167

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Unrestricted Travel in Solar Cells

In the past 2 years, organolead halide perovskites have emerged as a promising class of light-harvesting media in experimental solar cells, but the physical basis for their efficiency has been unclear (see the Perspective by Hodes). Two studies now show, using a variety of time-resolved absorption and emission spectroscopic techniques, that these materials manifest relatively long diffusion paths for charge carriers energized by light absorption. Xing et al. (p. 344) independently assessed (negative) electron and (positive) hole diffusion lengths and found them well-matched to one another to the ~100-nanometer optical absorption depth. Stranks et al. (p. 341) uncovered a 10-fold greater diffusion length in a chloride-doped material, which correlates with the material's particularly efficient overall performance. Both studies highlight effective carrier diffusion as a fruitful parameter for further optimization.

Abstract

Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole diffusion lengths (typically about 10 nanometers). Recent reports of highly efficient CH3NH3PbI3-based solar cells in a broad range of configurations raise a compelling case for understanding the fundamental photophysical mechanisms in these materials. By applying femtosecond transient optical spectroscopy to bilayers that interface this perovskite with either selective-electron or selective-hole extraction materials, we have uncovered concrete evidence of balanced long-range electron-hole diffusion lengths of at least 100 nanometers in solution-processed CH3NH3PbI3. The high photoconversion efficiencies of these systems stem from the comparable optical absorption length and charge-carrier diffusion lengths, transcending the traditional constraints of solution-processed semiconductors.

View Full Text