Report

One-Dimensional Electrical Contact to a Two-Dimensional Material

Science  01 Nov 2013:
Vol. 342, Issue 6158, pp. 614-617
DOI: 10.1126/science.1244358

You are currently viewing the abstract.

View Full Text

Better Contact Along the Edge

Electrical contact to graphene is normally done with metal contacts on its flat face, where there are few strong bonding sites for the metal. Wang et al. (p. 614) encapsulated graphene with hexagonal boron nitride sheets and made metal contacts along its edge, where bonding orbitals are exposed. The resulting heterostructures had high electronic performance, with room-temperature carrier mobilities near the theoretical phonon-scattering limit.

Abstract

Heterostructures based on layering of two-dimensional (2D) materials such as graphene and hexagonal boron nitride represent a new class of electronic devices. Realizing this potential, however, depends critically on the ability to make high-quality electrical contact. Here, we report a contact geometry in which we metalize only the 1D edge of a 2D graphene layer. In addition to outperforming conventional surface contacts, the edge-contact geometry allows a complete separation of the layer assembly and contact metallization processes. In graphene heterostructures, this enables high electronic performance, including low-temperature ballistic transport over distances longer than 15 micrometers, and room-temperature mobility comparable to the theoretical phonon-scattering limit. The edge-contact geometry provides new design possibilities for multilayered structures of complimentary 2D materials.

View Full Text