Report

Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States

Science  01 Nov 2013:
Vol. 342, Issue 6158, pp. 621-624
DOI: 10.1126/science.1243768

You are currently viewing the abstract.

View Full Text

Prairie Redux

Tallgrass prairie is extinct across much of its former range in the midwestern United States, but relicts preserved in cemeteries and nature reserves allow functional comparison of former grassland soils with modern agricultural soils. Fierer et al. (p. 621; see the Perspective by Scholes and Scholes) took matched soil samples from sites representing the gamut of climate conditions and modeled the combination of genomic analysis and environmental data to resurrect the historical prairie soil communities, identifying the nutrient-scavenging Verrucomicrobia as keystone bacteria in functioning prairie.

Abstract

Native tallgrass prairie once dominated much of the midwestern United States, but this biome and the soil microbial diversity that once sustained this highly productive system have been almost completely eradicated by decades of agricultural practices. We reconstructed the soil microbial diversity that once existed in this biome by analyzing relict prairie soils and found that the biogeographical patterns were largely driven by changes in the relative abundance of Verrucomicrobia, a poorly studied bacterial phylum that appears to dominate many prairie soils. Shotgun metagenomic data suggested that these spatial patterns were associated with strong shifts in carbon dynamics. We show that metagenomic approaches can be used to reconstruct below-ground biogeochemical and diversity gradients in endangered ecosystems; such information could be used to improve restoration efforts, given that even small changes in below-ground microbial diversity can have important impacts on ecosystem processes.

View Full Text