Report

Neural Activity in Human Hippocampal Formation Reveals the Spatial Context of Retrieved Memories

Science  29 Nov 2013:
Vol. 342, Issue 6162, pp. 1111-1114
DOI: 10.1126/science.1244056

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Remembrance of Places Past

The hippocampus has two major roles in cognition. Place-responsive neurons form a context-sensitive cognitive map, firing more strongly when an animal traverses specific regions of its environment. Both humans and animals thus need the hippocampus to learn their way around novel environments. Similarly, the hippocampus is critical for our ability to remember a specific event in space and time. It has thus been suggested that the spatial and memory functions of the hippocampus reflect a common architecture. Recording from neurosurgical patients playing a virtual reality memory game, Miller et al. (p. 1111) found that the recall of events was indeed associated with reinstatement of the place-firing of neurons activated as the subjects navigated through the environment.

Abstract

In many species, spatial navigation is supported by a network of place cells that exhibit increased firing whenever an animal is in a certain region of an environment. Does this neural representation of location form part of the spatiotemporal context into which episodic memories are encoded? We recorded medial temporal lobe neuronal activity as epilepsy patients performed a hybrid spatial and episodic memory task. We identified place-responsive cells active during virtual navigation and then asked whether the same cells activated during the subsequent recall of navigation-related memories without actual navigation. Place-responsive cell activity was reinstated during episodic memory retrieval. Neuronal firing during the retrieval of each memory was similar to the activity that represented the locations in the environment where the memory was initially encoded.

View Full Text