Report

MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice

Science  06 Dec 2013:
Vol. 342, Issue 6163, pp. 1254-1258
DOI: 10.1126/science.1244193

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Not Too Much, Not Too Little

The microRNA miR128 is expressed in brain neurons of the mouse. Lek Tan et al. (p. 1254) now find that miR128 is crucial to stable brain function. Mice deficient in miR128 developed hyperactivity and were susceptible to fatal seizures, whereas overexpression of miR128 correlated with reduced motor activity and reduced susceptibility to proconvulsive drugs. Experiments using ex vivo–isolated adult brain tissues suggested that miR-128 controlled motor activity by governing the signaling network that determines the intrinsic excitability and signal responsiveness of neurons.

Abstract

The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal–regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson’s–like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy and movement disorders.

View Full Text