First-Photon Imaging

+ See all authors and affiliations

Science  03 Jan 2014:
Vol. 343, Issue 6166, pp. 58-61
DOI: 10.1126/science.1246775

You are currently viewing the abstract.

View Full Text

Computing an Image

Firing off a burst of laser pulses and detecting the back-reflected photons is a widely used method for constructing three-dimensional (3D) images of a scene. Kirmani et al. (p. 58, published online 29 November) describe an active imaging method in which pulsed laser light raster scans a scene and a single-photon detector is used to detect the first photon of the back-reflected laser light. Exploiting spatial correlations of photons scattered from different parts of the scene allows computation of a 3D image. Importantly, for biological applications, the technique allows the laser power to be reduced without sacrificing image quality.


Imagers that use their own illumination can capture three-dimensional (3D) structure and reflectivity information. With photon-counting detectors, images can be acquired at extremely low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers typically require hundreds of detected photons per pixel for accurate range and reflectivity determination. We introduce a low-flux imaging technique, called first-photon imaging, which is a computational imager that exploits spatial correlations found in real-world scenes and the physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub–pulse duration range and 4-bit reflectivity information in the presence of high background noise. First-photon imaging may be of considerable value to both microscopy and remote sensing.

View Full Text