Direct Stereospecific Synthesis of Unprotected N-H and N-Me Aziridines from Olefins

See allHide authors and affiliations

Science  03 Jan 2014:
Vol. 343, Issue 6166, pp. 61-65
DOI: 10.1126/science.1245727

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Unadorned Aziridines

Multiple catalytic methods have been developed to make aziridines—strained triangular carbon-nitrogen-carbon rings that function as versatile synthetic intermediates. However, the majority require protection of the nitrogen precursor with a sulfonyl group that is subsequently inconvenient to remove. Jat et al. (p. 61; see the Perspective by Türkmen and Aggarwal) used a hydroxylamine derivative as the nitrogen source together with an established rhodium catalyst to prepare a wide range of unprotected aziridines, with nitrogen bonded simply to hydrogen or a methyl group.


Despite the prevalence of the N-H aziridine motif in bioactive natural products and the clear advantages of this unprotected parent structure over N-protected derivatives as a synthetic building block, no practical methods have emerged for direct synthesis of this compound class from unfunctionalized olefins. Here, we present a mild, versatile method for the direct stereospecific conversion of structurally diverse mono-, di-, tri-, and tetrasubstituted olefins to N-H aziridines using O-(2,4-dinitrophenyl)hydroxylamine (DPH) via homogeneous rhodium catalysis with no external oxidants. This method is operationally simple (i.e., one-pot), scalable, and fast at ambient temperature, furnishing N-H aziridines in good-to-excellent yields. Likewise, N-alkyl aziridines are prepared from N-alkylated DPH derivatives. Quantum-mechanical calculations suggest a plausible Rh-nitrene pathway.

View Full Text