Report

Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma

Science  10 Jan 2014:
Vol. 343, Issue 6167, pp. 189-193
DOI: 10.1126/science.1239947

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Back with a Vengeance

After surgery, gliomas (a type of brain tumor) recur in nearly all patients and often in a more aggressive form. Johnson et al. (p. 189, published online 12 December 2013) used exome sequencing to explore whether recurrent tumors harbor different mutations than the primary tumors and whether the mutational profile in the recurrences is influenced by postsurgical treatment of patients with temozolomide (TMZ), a chemotherapeutic drug known to damage DNA. In more than 40% of cases, at least half of the mutations in the initial glioma were undetected at recurrence. The recurrent tumors in many of the TMZ-treated patients bore the signature of TMZ-induced mutagenesis and appeared to follow an evolutionary path to high-grade glioma distinct from that in untreated patients.

Abstract

Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF; this suggests that recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB (retinoblastoma) and Akt-mTOR (mammalian target of rapamycin) pathways that bore the signature of TMZ-induced mutagenesis.

View Full Text

Cited By...