Research Article

Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation

+ See all authors and affiliations

Science  14 Mar 2014:
Vol. 343, Issue 6176, 1247997
DOI: 10.1126/science.1247997

You are currently viewing the abstract.

View Full Text

Structured Abstract

Introduction

Bacteria and archaea defend themselves against invasive DNA using adaptive immune systems comprising CRISPR (clustered regularly interspaced short palindromic repeats) loci and CRISPR-associated (Cas) genes. In association with Cas proteins, small CRISPR RNAs (crRNAs) guide the detection and cleavage of complementary DNA sequences. Type II CRISPR systems employ the RNA-guided endonuclease Cas9 to recognize and cleave double-stranded DNA (dsDNA) targets using conserved RuvC and HNH nuclease domains. Cas9-mediated cleavage is strictly dependent on the presence of a protospacer adjacent motif (PAM) in the target DNA. Recently, the biochemical properties of Cas9–guide RNA complexes have been harnessed for various genetic engineering applications and RNA-guided transcriptional control. Despite these ongoing successes, the structural basis for guide RNA recognition and DNA targeting by Cas9 is still unknown.

Embedded Image

Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. (A) Crystal structures of S. pyogenes (SpyCas9) and A. naeslundii (AnaCas9) Cas9 proteins. (B) Left: Negative-stain EM reconstructions of apo-SpyCas9 (top) and SpyCas9-RNA-target DNA complex (bottom) show that nucleic acid binding causes a reorientation of the nuclease (blue) and α-helical (gray) lobes in SpyCas9. Right: Cartoon representations of the structures. tracrRNA, trans-activating crRNA.

Rationale

To compare the architectures and domain organization of diverse Cas9 proteins, the atomic structures of Cas9 from Streptococcus pyogenes (SpyCas) and Actinomyces naeslundii (AnaCas9) were determined by x-ray crystallography. Crosslinking of target DNA containing 5-bromodeoxyuridines was conducted to identify PAM-interacting regions in SpyCas9. To test functional interactions with nucleic acid ligands, structure-based mutant SpyCas9 proteins were assayed for endonuclease activity with radiolabeled oligonucleotide dsDNA targets, and target DNA binding was monitored by electrophoretic mobility shift assays. To compare conformations of Cas9 in different states of nucleic acid binding, three-dimensional reconstructions of apo-SpyCas9, SpyCas9:RNA, and SpyCas9:RNA:DNA were obtained by negative-stain single-particle electron microscopy. Guide RNA and target DNA positions were determined with streptavidin labeling. Exonuclease protection assays were carried out to determine the extent of Cas9–target DNA interactions.

Results

The 2.6 Å–resolution structure of apo-SpyCas9 reveals a bilobed architecture comprising a nuclease domain lobe and an α-helical lobe. Both lobes contain conserved clefts that may function in nucleic acid binding. Photocrosslinking experiments show that the PAM in target DNA is engaged by two tryptophan-containing flexible loops, and mutations of both loops impair target DNA binding and cleavage. The 2.2 Å–resolution crystal structure of AnaCas9 reveals the conserved structural core shared by all Cas9 enzyme subtypes, and both SpyCas9 and AnaCas9 adopt autoinhibited conformations in their apo forms. The electron microscopic (EM) reconstructions of SpyCas9:RNA and SpyCas9:RNA:DNA complexes reveal that guide RNA binding results in a conformational rearrangement and formation of a central channel for target DNA binding. Site-specific labeling of guide RNA and target DNA define the orientations of nucleic acids in the target-bound complex.

Conclusion

The SpyCas9 and AnaCas9 structures define the molecular architecture of the Cas9 enzyme family in which a conserved structural core encompasses the two nuclease domains responsible for DNA cleavage, while structurally divergent regions, including the PAM recognition loops, are likely responsible for distinct guide RNA and PAM specificities. Cas9 enzymes adopt a catalytically inactive conformation in the apo state, necessitating structural activation for DNA recognition and cleavage. Our EM analysis shows that by triggering a conformational rearrangement in Cas9, the guide RNA acts as a critical determinant of target DNA binding.

Cas9 Solved

Clustered regularly interspaced short palindromic repeats (CRISPR)–associated (Cas) loci allow prokaryotes to identify and destroy invading DNA. Not only important to bacteria, the universal value of Cas endonuclease specificity has also resulted in Cas9 being exploited as a tool for genome editing. Jinek et al. (10.1126/science.1247997, published online 6 February) determined the 2.6 and 2.2 angstrom resolution crystal structures of two Cas9 enzymes to reveal a common structural core with distinct peripheral elaborations. The enzymes are autoinhibited, undergo large conformational changes on binding RNA, and have channels lined with basic residues that are candidates for an RNA-DNA binding groove. Based on these and other insights from the structures, this work provides important revelations both for the CRISPR mechanism and for genome editing.

Abstract

Type II CRISPR (clustered regularly interspaced short palindromic repeats)–Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA–induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.

  • * These authors contributed equally to this work.

  • Present address: Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.

  • § Present address: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.

View Full Text