Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

See allHide authors and affiliations

Science  21 Mar 2014:
Vol. 343, Issue 6177, pp. 1339-1343
DOI: 10.1126/science.1249061

You are currently viewing the abstract.

View Full Text

Giving Electrocatalysts an Edge

Platinum (Pt) is an excellent catalyst for the oxygen-reduction reaction (ORR) in fuel cells and electrolyzers, but it is too expensive and scarce for widespread deployment, even when dispersed as Pt nanoparticles on carbon electrode supports (Pt/C). Alternatively, Chen et al. (p. 1339, published online 27 February; see the Perspective by Greer) made highly active ORR catalysts by dissolving away the interior of rhombic dodecahedral PtNi3 nanocrystals to leave Pt-rich Pt3Ni edges. These nanoframe catalysts are durable—remaining active after 10,000 rounds of voltage cycling—and are far more active than Pt/C.


Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi3 polyhedra are maintained in the final Pt3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.

View Full Text