Review

Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide

See allHide authors and affiliations

Science  04 Apr 2014:
Vol. 344, Issue 6179, 1242552
DOI: 10.1126/science.1242552

You are currently viewing the abstract.

View Full Text

Structured Abstract

Background

Every year, billions of migratory animals cross the planet in pursuit of increased foraging opportunities, improved safety, and higher reproductive output. In so doing, these migrants transport nutrients, energy, and other organisms (including seeds, mollusks, parasites, and pathogens) between disparate locations. Migrants also forage and are preyed upon throughout their journeys, thereby establishing transport and trophic interactions with resident communities. Migratory animals thus couple ecological communities across the globe and may mediate their diversity and stability. However, as yet, the influence of migrants and their services on these communities is often overlooked, and as a consequence of global changes, migrations are threatened worldwide.

Embedded Image

Migrants change ecology and ecosystems. By transporting energy, nutrients, and other organisms, as well as foraging and becoming prey, migratory animals can substantially alter the dynamics of resident communities that they connect on their journeys across the globe. We illustrate key examples where migratory species profoundly alter food-web dynamics, community processes, and ecosystem functioning, indicating that migrants represent a unique, yet highly influential, component of biodiversity.

Advances

We review several examples in which interactions between migratory animals and resident communities have been quantified, illustrating the processes by which migrants may uniquely alter energy flow, food-web topology and stability, trophic cascades, and the structure and dynamics of (meta-)communities. For example, the inputs of nutrients and energy originating from distant localities by migrants can dramatically increase resource availability, with rippling consequences for productivity at various trophic levels and the potential to drive the transition between alternative stable states. Migrant-mediated transport of propagules of other organisms can lead to the establishment of new or lost species, as well as influencing gene flow and genetic mixing among resident populations. Similarly, migrants can alter parasite transmission, diversity, and evolution by harboring a broader range of parasites than residents and by either facilitating or hindering the long-distance dispersal of parasites.

Foraging by migrants can also have profound effects on community processes and ecosystem functions. For instance, grazing by migratory animals can alter nutrient cycling, primary productivity, biomass of edible plants, competitive interactions between plant species, and ultimately, the composition and long-term persistence of the entire plant community. The most striking difference between migrant and resident consumers is, however, the pulsed nature of migrant utilization and the timing of their interactions. Together, these fundamentally define the relationship between migrant abundance and primary production (in the case of migrant herbivores) or the stability of food webs (in the case of migratory predators).

Outlook

Our Review demonstrates that the highly predictable, seasonally pulsed nature of animal migration, together with the spatial scales at which it operates and the immense number of individuals involved, not only set migration apart from other types of movement, but render it a uniquely potent, yet underappreciated, dimension of biodiversity that is intimately embedded within resident communities. Given the potential for migration to influence ecological networks worldwide, we suggest integrative network approaches, through which studies of community dynamics and ecosystem functioning may explicitly consider animal migrations, understand the ramifications of their declines, and assist in developing effective conservation measures.

Abstract

Animal migrations span the globe, involving immense numbers of individuals from a wide range of taxa. Migrants transport nutrients, energy, and other organisms as they forage and are preyed upon throughout their journeys. These highly predictable, pulsed movements across large spatial scales render migration a potentially powerful yet underappreciated dimension of biodiversity that is intimately embedded within resident communities. We review examples from across the animal kingdom to distill fundamental processes by which migratory animals influence communities and ecosystems, demonstrating that they can uniquely alter energy flow, food-web topology and stability, trophic cascades, and the structure of metacommunities. Given the potential for migration to alter ecological networks worldwide, we suggest an integrative framework through which community dynamics and ecosystem functioning may explicitly consider animal migrations.

Migration Monitor

Seasonal migrations move large numbers of animals across often vast distances. Such movement shifts large amounts of biomass from one region to another, but, perhaps more importantly, moves animals that eat, excrete, and sometimes die in multiple remote systems. Such movements impact the communities, trophic structure, and function of these ecosystems in often underappreciated ways. Bauer and Hoye (10.1126/science.1242552) review migrations across taxa to identify the key ecological roles these long-distance movements play, and the unique threats the animals face in our increasingly modified world.

View Full Text