Research Article

Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator

Science  04 Apr 2014:
Vol. 344, Issue 6179, pp. 58-64
DOI: 10.1126/science.1249489

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Completing the Set

G protein–coupled receptors (GPCRs) are membrane proteins that transduce extracellular signals to activate diverse signaling pathways. Significant insight into GPCR function has come from structures of three of four classes of GPCRs—A, B, and Frizzled. Wu et al. (p. 58, published online 6 March) complete the picture by reporting the structure of metabotropic glutamate receptor 1, a class C GPCR. The structure shows differences in the seven-transmembrane (7TM) domain between class C and other classes; however, the overall fold is preserved. Class C GPCRs are known to form dimers through their extracellular domains; however, the structure suggests additional interactions between the 7TM domains mediated by cholesterol.

Abstract

The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein–coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate’s interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.

View Full Text

Cited By...