Research Article

Flies Evade Looming Targets by Executing Rapid Visually Directed Banked Turns

Science  11 Apr 2014:
Vol. 344, Issue 6180, pp. 172-177
DOI: 10.1126/science.1248955

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Taking Flight

Anyone who has tried to swat a fly knows that their powers of avoidance are impressive. Executing such rapid avoidance requires that the sensory recognition of an approaching threat be translated into evasive movement almost instantaneously. Muijres et al. (p. 172) used high-speed videos and winged robots to show that flies respond to approaching threats by making rapid banked turns initiated through subtle wing changes over just a few wing beats. The rapid nature of the turns suggests the existence of dedicated sensory-motor circuits that allow the flies to respond within a fraction of a second.

Abstract

Avoiding predators is an essential behavior in which animals must quickly transform sensory cues into evasive actions. Sensory reflexes are particularly fast in flying insects such as flies, but the means by which they evade aerial predators is not known. Using high-speed videography and automated tracking of flies in combination with aerodynamic measurements on flapping robots, we show that flying flies react to looming stimuli with directed banked turns. The maneuver consists of a rapid body rotation followed immediately by an active counter-rotation and is enacted by remarkably subtle changes in wing motion. These evasive maneuvers of flies are substantially faster than steering maneuvers measured previously and indicate the existence of sensory-motor circuitry that can reorient the fly’s flight path within a few wingbeats.

View Full Text