Report

Entangled States of More Than 40 Atoms in an Optical Fiber Cavity

+ See all authors and affiliations

Science  11 Apr 2014:
Vol. 344, Issue 6180, pp. 180-183
DOI: 10.1126/science.1248905

You are currently viewing the abstract.

View Full Text

All Together Now

In quantum entanglement, correlations between particles mean that the measurement of one determines the outcome of the other(s). Generally, when trying to exploit quantum entanglement, the larger the number of entangled particles, the better. However, the size of entangled systems has been limited. Haas et al. (p. 180, published online 27 March; see the Perspective by Widera) prepared a small ensemble of ultracold atoms into a collective entangled state. Starting from one internal quantum state, the system of cold atoms was excited with a weak microwave pulse leading to a small excitation probability. Because it is not known which atom is promoted into the excited state, the detection of one quantum of excitation projects the system into an entangled quantum state, called a W-state. A fast repeat-until-success scheme produced such W-states quasi-deterministically. Using such a technique was able to yield entangled states of more than 40 particles. The relatively large ensemble-entangled states could potentially in the future find use in quantum sensing or enhanced quantum metrology applications.

Abstract

Multiparticle entanglement enables quantum simulations, quantum computing, and quantum-enhanced metrology. Yet, there are few methods to produce and measure such entanglement while maintaining single-qubit resolution as the number of qubits is scaled up. Using atom chips and fiber-optical cavities, we have developed a method based on nondestructive collective measurement and conditional evolution to create symmetric entangled states and perform their tomography. We demonstrate creation and analysis of entangled states with mean atom numbers up to 41 and experimentally prove multiparticle entanglement. Our method is independent of atom number and should allow generalization to other entangled states and other physical implementations, including circuit quantum electrodynamics.

View Full Text