Report

Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor

Science  18 Apr 2014:
Vol. 344, Issue 6181, pp. 299-303
DOI: 10.1126/science.1247357

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Universal Immune Function

Certain pathogen effectors are detected in plants by cytoplasmic receptors. First solving the crystal structures of Arabidopsis receptors, Williams et al. (p. 299; see the Perspective by Nishimura and Dangl) discovered that in the resting state, the structures form a heterodimer that readies the complex for effector binding and keeps the signaling domains from firing too early. Once the pathogen effector binds, the structure of the complex shifts such that the signaling domains can form a homodimer to initiate downstream signaling. Similarities between these plant-pathogen receptors and Toll-like receptors in animals suggest the molecular mechanisms may translate broadly.

Abstract

Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll–interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.

View Full Text