Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica

Science  16 May 2014:
Vol. 344, Issue 6185, pp. 735-738
DOI: 10.1126/science.1249055

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Antarctic Collapse

The West Antarctic Ice Sheet (WAIS) is particularly vulnerable to ocean warming-induced collapse. The Thwaites Glacier of West Antarctica is one of the largest WAIS regional contributors to sea level rise, and has been considered to be potentially unstable for many years. Joughin et al. (p. 735) used a combination of a numerical model and observations of its recent geometry and movement to investigate the stability of the Thwaites Glacier. The glacier has already entered the early stages of collapse, and rapid and irreversible collapse is likely in the next 200 to 1000 years.


Resting atop a deep marine basin, the West Antarctic Ice Sheet has long been considered prone to instability. Using a numerical model, we investigated the sensitivity of Thwaites Glacier to ocean melt and whether its unstable retreat is already under way. Our model reproduces observed losses when forced with ocean melt comparable to estimates. Simulated losses are moderate (<0.25 mm per year at sea level) over the 21st century but generally increase thereafter. Except possibly for the lowest-melt scenario, the simulations indicate that early-stage collapse has begun. Less certain is the time scale, with the onset of rapid (>1 mm per year of sea-level rise) collapse in the different simulations within the range of 200 to 900 years.

View Full Text