Report

Stick Insect Genomes Reveal Natural Selection’s Role in Parallel Speciation

Science  16 May 2014:
Vol. 344, Issue 6185, pp. 738-742
DOI: 10.1126/science.1252136

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Stick to the Bush

Can the underlying genetic changes driving the divergence of populations into new species be predicted or repeated? Soria-Carrasco et al. (p. 738) investigated the genetic changes observed after one generation when stick insect (Timema cristinae) populations were transplanted from their preferred host plants to alternative hosts. Diverged genetic regions were relatively small, with most loci showing divergence in a single population pair. However, the number of loci showing parallel divergence was greater than expected by chance. Thus, selection can drive parallel phenotypic evolution via parallel genetic changes.

Abstract

Natural selection can drive the repeated evolution of reproductive isolation, but the genomic basis of parallel speciation remains poorly understood. We analyzed whole-genome divergence between replicate pairs of stick insect populations that are adapted to different host plants and undergoing parallel speciation. We found thousands of modest-sized genomic regions of accentuated divergence between populations, most of which are unique to individual population pairs. We also detected parallel genomic divergence across population pairs involving an excess of coding genes with specific molecular functions. Regions of parallel genomic divergence in nature exhibited exceptional allele frequency changes between hosts in a field transplant experiment. The results advance understanding of biological diversification by providing convergent observational and experimental evidence for selection’s role in driving repeatable genomic divergence.

View Full Text

Cited By...