Report

Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome

Science  23 May 2014:
Vol. 344, Issue 6186, pp. 917-920
DOI: 10.1126/science.1252328

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Abstract

Cushing’s syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing’s syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)–dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing’s syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing’s syndrome, providing insights into the diagnosis and therapeutics of this syndrome.

Candidate Cushing's culprit identified

Cushing's syndrome is a rare condition resulting from the excess production of cortisol. About 15% of Cushing's syndrome cases are associated with an adrenocortical tumor. However, the genetic etiology of these adrenocortical tumors is ill defined (see the Perspective by Kirschner). Cao et al. and Sato et al. both performed whole-exome sequencing of tumors from individuals with adrenal Cushing's syndrome and compared it with the patient's own matched non-tumor DNA and identified recurrent mutations in the protein kinase A catalytic subunit alpha (PRKACA) gene, as well as less frequent mutations in other putative pathological genes. The most common recurrent mutation activated the kinase, which may suggest a potential therapeutic target.

Science, this issue p. 913, p. 917; see also p. 804

View Full Text