Report

Mechanically detecting and avoiding the quantum fluctuations of a microwave field

Science  13 Jun 2014:
Vol. 344, Issue 6189, pp. 1262-1265
DOI: 10.1126/science.1253258

You are currently viewing the abstract.

View Full Text

Avoiding back-action in quantum measurements

The very process of measuring a quantum system has an influence on the system through the process of back-action. Suh et al. used a back-action evasion scheme to monitor the motion of a miniature oscillator without influencing its motion (see the Perspective by Bouwmeester). The scheme should help in the understanding of the fundamental limits associated with measurement and will have practical implications in providing a low-temperature thermometer and a probe of extremely weak forces.

Science, this issue p. 1262

Abstract

Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called “back-action evading” or “quantum nondemolition” detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.

View Full Text