Report

Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices

Science  20 Jun 2014:
Vol. 344, Issue 6190, pp. 1377-1380
DOI: 10.1126/science.1252642

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Nanoparticle lattices and surfaces

The challenge of resolving the details of the surfaces or assemblies of colloidal semiconductor nanoparticles can be overcome if several characterization methods are used (see the Perspective by Boles and Talapin). Boneschanscher et al. examined honeycomb superlattices of lead selenide nanocrystals formed by the bonding of crystal faces using several methods, including high-resolution electron microscopy and tomography. The structure had octahedral symmetry with the nanocrystals distorted through “necking”: the expansion of the contact points between the nanocrystals. Zherebetskyy et al. used a combination of theoretical calculations and spectroscopic methods to study the surface layer of lead sulfide nanocrystals synthesized in water. In addition to the oleic acid groups that capped the nanocrystals, hydroxyl groups were present as well.

Science, this issue p. 1377, p. 1380; see also p. 1340

Abstract

Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands such as graphene, but also strong spin-orbit coupling. The two-dimensional (2D) assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in 2D metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.

View Full Text

Related Content