Report

Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages

Science  11 Jul 2014:
Vol. 345, Issue 6193, pp. 207-212
DOI: 10.1126/science.1252476

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Up and down go the cyanobacteria

Plankton move together in strikingly coordinated daily patterns, sinking at night to avoid being eaten and rising to the surface in daylight to photosynthesize. Otteson et al. found similar activity patterns in even the smallest of planktonic organisms, such as photosynthetic bacteria (see the Perspective by Armbrust). Because it's hard to take regular samples in the open ocean, the authors built a robotic sampler and set it adrift for several days in the mid-Pacific. The captured bacteria showed immediate responses to changes in light, temperature, and salinity in ways that could affect the ocean's carbon and nitrogen cycles.

Science, this issue p. 207; see also p. 134

Abstract

Oscillating diurnal rhythms of gene transcription, metabolic activity, and behavior are found in all three domains of life. However, diel cycles in naturally occurring heterotrophic bacteria and archaea have rarely been observed. Here, we report time-resolved whole-genome transcriptome profiles of multiple, naturally occurring oceanic bacterial populations sampled in situ over 3 days. As anticipated, the cyanobacterial transcriptome exhibited pronounced diel periodicity. Unexpectedly, several different heterotrophic bacterioplankton groups also displayed diel cycling in many of their gene transcripts. Furthermore, diel oscillations in different heterotrophic bacterial groups suggested population-specific timing of peak transcript expression in a variety of metabolic gene suites. These staggered multispecies waves of diel gene transcription may influence both the tempo and the mode of matter and energy transformation in the sea.

View Full Text

Related Content