Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation

Science  01 Aug 2014:
Vol. 345, Issue 6196, pp. 578-582
DOI: 10.1126/science.1256942

You are currently viewing the abstract.

View Full Text

Parasites make it hard to fight viruses

Microbial co-infections challenge the immune system—different pathogens often require different flavors of immune responses for their elimination or containment (see the Perspective by Maizels and Gause). Two teams studied what happens when parasitic worms and viruses infect mice at the same time. Reese et al. found that parasite co-infection woke up a dormant virus. Osborne et al. found that mice already infected with parasitic worms were worse at fighting off viruses. In both cases, worms skewed the immune response so that the immune cells and the molecules they secreted created an environment favorable for the worm at the expense of antiviral immunity.

Science, this issue p. 573 and p. 578; see also p. 517


The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1.

View Full Text