Research Article

In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism

Science  15 Aug 2014:
Vol. 345, Issue 6198,
DOI: 10.1126/science.1255903

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

Structured Abstract


The rapid global rise in metabolic disease suggests that nongenetic environmental factors contribute to disease risk. Early life represents a window of phenotypic plasticity important for adult metabolic health and that of future generations. Epigenetic inheritance has been implicated in the paternal transmission of environmentally induced phenotypes, but the mechanisms responsible remain unknown.

Embedded Image

In utero undernourishment alters the adult germ cell methylome. Undernourishment during PGC reprogramming results in hypomethylation of discrete loci in adult sperm. These regions are enriched in nucleosomes and are low-methylated regions. Although partially resistant to blastocyst reprogramming, differential methylation does not persist in the next generation. However, dysregulated expression of genes neighboring DMRs is observed in F2 offspring.


We investigated the role of DNA methylation in epigenetic inheritance in an established murine model of intergenerational developmental programming. F1 offspring of undernourished dams (UN) have low birth weight and multiple metabolic defects. Metabolic phenotypic inheritance to the F2 generation is observed through the paternal line, even though the F1 mice did not experience postnatal environmental perturbation. The timing of nutritional restriction coincides with methylation reacquisition in F1 male primordial germ cells (PGCs). Therefore, we assessed F1 sperm whole-genome methylation using immunoprecipitation of methylated DNA, combined with high-throughput sequencing, followed by independent validation. We characterized the regions susceptible to methylation change and investigated the legacy of such methylation change in the phenotypic development of the next generation.


In UN mice, 111 regions are hypomethylated relative to control sperm, and these changes are validated by bisulfite pyrosequencing. Methylation differences span multiple CpGs, with robust absolute changes of 10 to 30% (relative reduction ~50%). The absolute methylation level is consistent with differentially methylated regions (DMRs) being “low-methylated regions,” known to be enriched in regulatory elements. Indeed, luciferase assays suggest a role for these DMRs in transcriptional regulation. Hypomethylated DMRs are significantly depleted from coding and repetitive regions and enriched in intergenic regions and CpG islands. They are also enriched in nucleosome-retaining regions, which suggests that, at some loci, paternal germline hypomethylation induced by in utero undernutrition is transmitted in a chromatin context. DMRs are late to regain methylation in normal male PGCs. This may render them particularly susceptible to environmental perturbations that delay or impair remethylation in late gestation.

Except for imprinted loci, gene-associated male germline methylation has generally been thought to be largely erased in the zygote,although recent studies suggest that resistance to reprogramming is more widespread. Indeed, 43% of hypomethylated DMRs persist and thus have the potential to affect development of the next generation. We show that differential methylation is lost in late-gestation F2 tissues, but considerable tissue-specific differences in expression of metabolic genes neighboring DMRs are present. Thus, it is unlikely that these expression changes are directly mediated by altered methylation; rather, the cumulative effects of dysregulated epigenetic patterns earlier in development may yield sustained alterations in chromatin architecture, transcriptional regulatory networks, differentiation, or tissue structure.


Prenatal undernutrition can compromise male germline epigenetic reprogramming and thus permanently alter DNA methylation in the sperm of adult offspring at regions resistant to zygotic reprogramming. However, persistence of altered DNA methylation into late-gestation somatic tissues of the subsequent generation is not observed. Nonetheless, alterations in gamete methylation may serve as a legacy of earlier developmental exposures and may contribute to the intergenerational transmission of environmentally induced disease.

The nutritional sins of the mother…

Prenatal exposures of a mother can affect the health of her offspring, but how? Radford et al. found that the male progeny of undernourished pregnant mice had altered DNA chemistry in their sperm. In addition, the offspring displayed compromised metabolic health. The specific affected genes not only lost DNA methylation but also lacked the normal sperm DNA packaging factors (protamines) and instead were enriched in nucleosomes. Thus, when subjected to a suboptimal prenatal environment, offspring feel the effects of the maternal assault.

Science, this issue p. 10.1126/science.1255903


Adverse prenatal environments can promote metabolic disease in offspring and subsequent generations. Animal models and epidemiological data implicate epigenetic inheritance, but the mechanisms remain unknown. In an intergenerational developmental programming model affecting F2 mouse metabolism, we demonstrate that the in utero nutritional environment of F1 embryos alters the germline DNA methylome of F1 adult males in a locus-specific manner. Differentially methylated regions are hypomethylated and enriched in nucleosome-retaining regions. A substantial fraction is resistant to early embryo methylation reprogramming, which may have an impact on F2 development. Differential methylation is not maintained in F2 tissues, yet locus-specific expression is perturbed. Thus, in utero nutritional exposures during critical windows of germ cell development can impact the male germline methylome, associated with metabolic disease in offspring.

View Full Text

Related Content