Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation

+ See all authors and affiliations

Science  15 Aug 2014:
Vol. 345, Issue 6198, pp. 804-808
DOI: 10.1126/science.1254910

You are currently viewing the abstract.

View Full Text

Setting the stage for release of oxygen

Plants transform water into the oxygen we breathe using a protein-bound cluster of four manganese (Mn) ions and a calcium ion. Cox et al. now establish the precise electronic structure in that cluster immediately before formation of the O-O bond (see the Perspective by Britt and Oyala). Using the technique of electron paramagnetic resonance spectroscopy, they confirm a hypothesis that all four Mn ions are octahedrally coordinated and in the 4+ oxidation state. Such clues to the efficiency of the photosynthetic process, so essential to life on Earth, may also facilitate the development of artificial waters-plitting catalysts.

Science, this issue p. 804; see also p. 736


The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor.

View Full Text