You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Toward an “artificial cell” on a chip
Cell-free systems that reconstitute biochemical pathways have been critical for unraveling the inner workings of the cell. Karzbrun et al. created a highly miniaturized cell-free system on a silicon chip. A series of tiny linked compartments were fabricated on the chip, in which DNA-driven reactions occurred, with materials flowing into and diffusing between the compartments. The system recreated oscillating protein expression patterns and protein gradients, and provides a stepping stone to creating “artificial cells” on a chip.
Science, this issue p. 829
Abstract
The assembly of artificial cells capable of executing synthetic DNA programs has been an important goal for basic research and biotechnology. We assembled two-dimensional DNA compartments fabricated in silicon as artificial cells capable of metabolism, programmable protein synthesis, and communication. Metabolism is maintained by continuous diffusion of nutrients and products through a thin capillary, connecting protein synthesis in the DNA compartment with the environment. We programmed protein expression cycles, autoregulated protein levels, and a signaling expression gradient, equivalent to a morphogen, in an array of interconnected compartments at the scale of an embryo. Gene expression in the DNA compartment reveals a rich, dynamic system that is controlled by geometry, offering a means for studying biological networks outside a living cell.











