You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Practice makes perfect — or does it?
How do we learn from past errors? Herzfeld et al. found that when we practice a movement, the human brain has a memory for errors that is then used to learn faster in new conditions. This memory for error exists in parallel with motor memory's two traditional forms: memory of actions and memory of external perturbations. They also proposed a mathematical model for learning from errors. This model explained previous experimental results and predicted other major findings that they later verified experimentally.
Science, this issue p. 1349
Abstract
The current view of motor learning suggests that when we revisit a task, the brain recalls the motor commands it previously learned. In this view, motor memory is a memory of motor commands, acquired through trial-and-error and reinforcement. Here we show that the brain controls how much it is willing to learn from the current error through a principled mechanism that depends on the history of past errors. This suggests that the brain stores a previously unknown form of memory, a memory of errors. A mathematical formulation of this idea provides insights into a host of puzzling experimental data, including savings and meta-learning, demonstrating that when we are better at a motor task, it is partly because the brain recognizes the errors it experienced before.