Report

Altered sterol composition renders yeast thermotolerant

Science  03 Oct 2014:
Vol. 346, Issue 6205, pp. 75-78
DOI: 10.1126/science.1258137

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Tricks for boosting yeast's ethanol yields

To become a widely used source of fuel, widespread industrial production of ethanol using yeast needs to be simple and efficient. However, two conditions ideal for boosting production—tolerance of higher temperatures and high concentrations of ethanol—have been limiting (see the Perspective by Cheng and Kao). Now, Caspeta et al. have used adaptive laboratory evolution to find yeast strains that can tolerate high temperatures and Lam et al. have identified a route to improve yeast's resistance to high concentrations of ethanol.

Science, this issue p. 75, p. 71; see also p. 35

Abstract

Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype.

View Full Text