Loss-induced suppression and revival of lasing

See allHide authors and affiliations

Science  17 Oct 2014:
Vol. 346, Issue 6207, pp. 328-332
DOI: 10.1126/science.1258004

You are currently viewing the abstract.

View Full Text


Controlling and reversing the effects of loss are major challenges in optical systems. For lasers, losses need to be overcome by a sufficient amount of gain to reach the lasing threshold. In this work, we show how to turn losses into gain by steering the parameters of a system to the vicinity of an exceptional point (EP), which occurs when the eigenvalues and the corresponding eigenstates of a system coalesce. In our system of coupled microresonators, EPs are manifested as the loss-induced suppression and revival of lasing. Below a critical value, adding loss annihilates an existing Raman laser. Beyond this critical threshold, lasing recovers despite the increasing loss, in stark contrast to what would be expected from conventional laser theory. Our results exemplify the counterintuitive features of EPs and present an innovative method for reversing the effect of loss.

Achieving gain despite increasing loss

When energy is pumped into an optically active material, the buildup (or gain) of excitations within the material can reach a critical point where the emission of coherent light, or lasing, can occur. In many systems, however, the buildup of the excitations is suppressed by losses within the material. Overturning conventional wisdom that loss is bad and should be minimized, Peng et al. show that carefully tweaking the coupling strength between the various components of a coupled optical system can actually result in an enhancement of the optical properties by adding more loss into the system (see the Perspective by Schwefel). The results may provide a clever design approach to counteract loss in optical devices.

Science, this issue p. 328; see also p. 304

View Full Text