Research Article

Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes

Science  02 Jan 2015:
Vol. 347, Issue 6217,
DOI: 10.1126/science.1258522

You are currently viewing the abstract.

View Full Text

Structured Abstract

INTRODUCTION

Control of mosquito vectors has historically proven to be an effective means of eliminating malaria. Human malaria is transmitted only by mosquitoes in the genus Anopheles, but not all species within the genus, or even all members of each vector species, are efficient malaria vectors. Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history.

RATIONALE

This variation in vectorial capacity suggests an underlying genetic/genomic plasticity that results in variation of key traits determining vectorial capacity within the genus. Sequencing the genome of Anopheles gambiae, the most important malaria vector in sub-Saharan Africa, has offered numerous insights into how that species became highly specialized to live among and feed upon humans and how susceptibility to mosquito control strategies is determined. Until very recently, similar genomic resources have not existed for other anophelines, limiting comparisons to individual genes or sets of genomic markers with no genome-wide data to investigate attributes associated with vectorial capacity across the genus.

RESULTS

We sequenced and assembled the genomes and transcriptomes of 16 anophelines from Africa, Asia, Europe, and Latin America, spanning ~100 million years of evolution and chosen to represent a range of evolutionary distances from An. gambiae, a variety of geographic locations and ecological conditions, and varying degrees of vectorial capacity. Genome assembly quality reflected DNA template quality and homozygosity. Despite variation in contiguity, the assemblies were remarkably complete and searches for arthropod-wide single-copy orthologs generally revealed few missing genes. Genome annotation supported with RNA sequencing transcriptomes yielded between 10,738 and 16,149 protein-coding genes for each species. Relative to Drosophila, the closest dipteran genus for which equivalent genomic resources exist, Anopheles exhibits a dynamic genomic evolutionary profile. Comparative analyses show a fivefold faster rate of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses in Anopheles. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. We also document evidence of variation in important reproductive phenotypes, genes controlling immunity to Plasmodium malaria parasites and other microbes, genes encoding cuticular and salivary proteins, and genes conferring metabolic insecticide resistance. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.

CONCLUSIONS

Anopheline mosquitoes exhibit a molecular evolutionary profile very distinct from Drosophila, and their genomes harbor strong evidence of functional variation in traits that determine vectorial capacity. These 16 new reference genome assemblies provide a foundation for hypothesis generation and testing to further our understanding of the diverse biological traits that determine vectorial capacity.

Geography, vector status, and molecular phylogeny of the 16 newly sequenced anopheline mosquitoes and selected other dipterans.

The maximum likelihood molecular phylogeny of all sequenced anophelines and two mosquito outgroups was constructed from the aligned protein sequences of 1085 single-copy orthologs. Shapes between branch termini and species names indicate vector status and are colored according to geographic ranges depicted on the map.

Abstract

Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.

Mosquito adaptability across genomes

Virtually everyone has first-hand experience with mosquitoes. Few recognize the subtle biological distinctions among these bloodsucking flies that render some bites mere nuisances and others the initiation of a potentially life-threatening infection. By sequencing the genomes of several mosquitoes in depth, Neafsey et al. and Fontaine et al. reveal clues that explain the mystery of why only some species of one genus of mosquitoes are capable of transmitting human malaria (see the Perspective by Clark and Messer).

Science, this issue 10.1126/science.1258524 and 10.1126/science.1258522; see also p. 27

View Full Text